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Abstract 

 

This project constructs a model of a fluid pipe flow by developing a velocity profile and 

calculating mass flow rates from a static to steady-flow state. This was done by analytically 

obtaining an explicit equation for fluid velocity as a function of position and time using the finite 

difference method with initial conditions and boundary conditions. MATLAB is used to 

visualize the velocity profile and calculate mass flow rate using the composite trapezoid rule to 

numerically integrate the profile. The most optimal spacing and time step size was determined by 

comparing the numerically computed results to the analytical results and choosing the values that 

produce the most accurate results. Using 20 divisions as determined from a spacing of 0.05 and 

time step of 0.00125, the maximum centerline velocity of 0.1249 and a steady-state mass flow 

rate of 0.083074, with a total error of only 0.39% from the analytical maximum velocity of 

0.1250 and mass flow rate of 0.083333. The steady-state velocity profile was parabolic and the 

mass flow rate as a function of time was most closely modeled using an exponential equation. 

The results obtained were as expected, and therefore this model can be used to determine flow 

properties of any given dimensional variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

A fluid is initially static in a conduit with an ambient pressure of 𝑃𝑎𝑡𝑚. At time 𝑡′ = 0, the 

pressure on the left side is suddenly increased to a pressure 𝑃𝑎𝑡𝑚 + 𝑃0 and constantly maintained. 

As a result, the fluid is subject to internal flow towards the lower ambient pressure. However, the 

no-slip condition at the walls and viscous effects cause the velocity near the walls to decrease 

and consequently, the velocity near the centerline to increase. This creates a parabolic velocity 

profile as the flow reaches a steady state. The objective of this project is to observe the 

development of the velocity profile 𝑢′(𝑦′, 𝑡′) and determine the mass flow rate as a function of 

time. 

 

Mathematical Statement 

 

The geometry of this problem is as given: 

 

 
 

Where 

𝑃𝑎𝑡𝑚 is atmospheric pressure 

𝑃0 is the applied pressure 

H is the channel height 

L is the channel length 

𝑢′ is the velocity  

 

The fluid flows from left to right through a channel of length L, until the flow reaches a steady 

state as depicted. The top and bottom boundaries are a wall, the left boundary is a pressure inlet 

and the right boundary is a pressure outlet. This channel is assumed to be axisymmetric. 

 

In this report, variables indicated with a single quote are considered dimensional and variables 

without a single quote are considered dimensionless. 

 

 

 

 



Governing Equations 

 

The equations which govern the pressure and velocity distribution for this flow are as follows. 

Because the flow must follow the conservation of mass, the continuity equation is expressed as 

 

𝜕𝑢′

𝜕𝑥′
= 0 

 

Additionally, the 𝑥′-momentum is given as 

 

𝜌
𝜕𝑢′

𝜕𝑡′
= −

𝑑𝑃′

𝑑𝑥′
+ 𝜇

𝜕2𝑢′

𝜕𝑦′2
 

 

Where  

𝑃′ is the fluid pressure as a function of 𝑥′, 𝑃′(𝑥′) 

𝑢′ is the fluid velocity as a function of 𝑦′ and 𝑡′, 𝑢′(𝑦′, 𝑡′) 

𝑡′ is the time 

𝜌 is the fluid density (constant) 

µ is the fluid viscosity (constant) 

 

Differentiating the 𝑥′-momentum with respect to 𝑥′, 
 

𝜌
𝜕

𝜕𝑡′
(

𝜕𝑢′

𝜕𝑥′
) = −

𝑑2𝑃′

𝑑𝑥′2
+ 𝜇

𝜕2

𝜕𝑦′

𝜕𝑢′

𝜕𝑥′
 

 

Using the continuity equation, the 𝑥′-momentum reduces to 

 

𝑑2𝑃′

𝑑𝑥′2
= 0 

 

Boundary conditions will be used to determine the pressure distribution by integration. 

 

The boundary conditions for this problem are as follows. 

 

 

 

 

Furthermore, the initial condition is given as 

 

𝑢′(𝑦, 0) = 0 

 

 

 

𝑃′(0) = 𝑃𝑎𝑡𝑚 + 𝑃0  

𝑃′(𝐿) = 𝑃𝑎𝑡𝑚 

 

𝑢′(0, 𝑡′) = 0 

𝑢′(𝐻, 𝑡′) = 0 

 



Nondimensionalization 

 

In order to make the solution universally applicable, the following dimensionless variables will 

be introduced. 

 

𝑥 =
𝑥′

𝐿
          𝑦 =

𝑦′

𝐻
          𝑡 =

𝜇

𝜌𝐻2
𝑡′         𝑃 =

𝑃′ − 𝑃𝑎𝑡𝑚

𝑃0
          𝑢 =

𝜇𝐿

𝑃0𝐻2
𝑢′ 

 

In terms of dimensionless variables, the differential equations, boundary conditions, and initial 

condition may be written as follows. 

 

The 𝑥-momentum is 

𝑑2𝑃

𝑑𝑥2
= 0 

 

Velocity as a function of time is 

𝜕𝑢

𝜕𝑡
= −

𝑑𝑃

𝑑𝑥
+

𝜕2𝑢

𝜕𝑦2
 

 

The boundary conditions are 

 

 

 

 

The initial condition is 

𝑢(𝑦, 0) = 0 

 

Pressure Distribution and Pressure Gradient 

 

The pressure distribution and pressure gradient are found using the boundary conditions.  

Integrating equation (1) twice with respect to x, 

 

𝑑𝑃

𝑑𝑥
= 𝐶1          and          𝑃 = 𝐶1𝑥 + 𝐶2 

 

Using the boundary conditions,  

 

 

 

Therefore, the differential equations to be solved are as follows. 

 

𝑃(𝑥) = −𝑥 + 1                    
𝑑𝑃

𝑑𝑥
= −1                    

𝜕𝑢

𝜕𝑡
= 1 +

𝜕2𝑢

𝑑𝑦2
 

𝑃(0) = 1  

𝑃(1) = 0 

 

𝑢(0, 𝑡) = 0 

𝑢(1, 𝑡) = 0 

 

𝑃(0) = 1 ⇒   𝐶2 = 1 

𝑃(1) = 0 ⇒  𝐶1 + 1 = 0 ⇒  𝐶1 = −1 

 

(1) 

(2) 



Method of Solution 

 

In order to solve these differential equations, the finite difference method will be used.  

A grid is placed over the region of interest to calculate the values of velocity u at a given time t 

and vertical distance y. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where  𝑢𝑖,𝑗 = 𝑢(𝑦𝑖, 𝑡𝑗) 

 

The values of the velocity surrounding the point 𝑢𝑖,𝑗 can then be determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Approximation of Derivatives by Finite Differences 

 

Using a Taylor Series Expansion, the values for the partial derivatives of velocity u with respect 

to vertical distance y can be developed. The velocity at a vertical distance 𝑦𝑖+1 is as follows: 

 

𝑢𝑖+1,𝑗 = 𝑢𝑖,𝑗 +
𝜕𝑢

𝜕𝑦
∆𝑦 +

𝜕2𝑢

𝜕𝑦2

(∆𝑦)2

2!
+

𝜕3𝑢

𝜕𝑦3

(∆𝑦)3

3!
+

𝜕4𝑢

𝜕𝑦4

(∆𝑦)4

4!
⋯          (a) 

 

Replacing ∆𝑦 with −∆𝑦 to obtain the velocity at a location 𝑦𝑖−1, 

 

𝑢𝑖−1,𝑗 = 𝑢𝑖,𝑗 −
𝜕𝑢

𝜕𝑦
∆𝑦 +

𝜕2𝑢

𝜕𝑦2

(∆𝑦)2

2!
−

𝜕3𝑢

𝜕𝑦3

(∆𝑦)3

3!
+

𝜕4𝑢

𝜕𝑦4

(∆𝑦)4

4!
⋯          (b) 

 

Where all of the partial derivatives are evaluated at (𝑦𝑖, 𝑡𝑗). 

 

From equation (a), the forward difference approximation is 

 

𝜕𝑢

𝜕𝑦
=

𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

∆𝑦
+ O(∆𝑦) 

 

And from equation (b), the backward difference approximation is 

 

𝜕𝑢

𝜕𝑦
=

𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

∆𝑦
+ O(∆𝑦) 

 

Finally, subtracting equation (b) from equation (a) gives the central difference approximation, 

 

𝜕𝑢

𝜕𝑦
=

𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2∆𝑦
+ O(∆𝑦)2 

 

And adding equation (b) to equation (a) gives the second partial derivative of velocity u with 

respect to vertical distance y, 

 

𝜕2𝑢

𝜕𝑦2
=

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

(∆𝑦)2
+ O(∆𝑦)2 

 

Using the previously determined differential equations, boundary conditions, and initial 

conditions, the differential equation can be rewritten. In this situation, the forward difference will 

be used as an approximation for the partial derivative of velocity u with respect to vertical 

distance y. 
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
= 1 +

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

(∆𝑦)2
 



 

Solving for 𝑢𝑖,𝑗+1, the following final equation is obtained.  

 

𝑢𝑖,𝑗+1 = 𝜆𝑢𝑖−1,𝑗 + (1 − 2𝜆)𝑢𝑖,𝑗 + 𝜆𝑢𝑖+1,𝑗 + ∆𝑡 

 

Where  

𝜆 =
∆𝑡

(∆𝑦)2
 

 

In order for the finite difference equation to be stable, the Courant condition must be satisfied: 

 

0 < 𝜆 ≤
1

2
  

 

For maximum efficiency, it is important to choose the largest value of ∆𝑦 that does not cause 

divergence and satisfies the Courant condition. 

 

The equation is used to determine the velocity u at a time step  j +1 based on the values of 

velocity u at the previous time j at a vertical distance yi-1, yi, and yi+1. These values of velocity 

will be used to calculate the mass flow rate, which is defined as the integration of the velocity 

profile at a particular time. 

 

Mass Flow Rate Calculation 

 

Mass flow rate is calculated in terms of dimensional values as: 

 

�̇�′ = ∫ 𝜌𝑢′ 𝑑𝐴′          (kg/s) 

 

Where 𝑑𝐴′ is the area of the element normal to the direction of velocity u.  

 

For a channel of width W, 𝑑𝐴′ is defined as 𝑑𝐴′ = 𝑊𝑑𝑦′. Therefore, 

 

�̇�′ = 𝜌𝑊 ∫ 𝑢′𝑑𝑦′
𝐻

0

 

And in terms of dimensionless variables, 

�̇�(𝑡) = ∫ 𝑢(𝑦, 𝑡)𝑑𝑦
1

0

 

Where  

�̇�′ =
𝜌𝑊𝑃0𝐻3

𝜇𝐿
�̇� 

 

The mass flow rate �̇� can be calculated for a particular time step and then curve fitted as a 

function of time. 



Steady State Mass Flow Rate 

 

As the time t reaches infinity, the velocity u reaches a steady state. Therefore, 

 

𝜕𝑢

𝜕𝑡
= 1 +

𝜕2𝑢

𝑑𝑦2
= 0 

 

The velocity u only depends on vertical distance y and is independent of time t. This gives us that 

 

𝑑2𝑢

𝑑𝑦2
= −1 

 

Integrating twice with respect to y leads to 

 

𝑑𝑢

𝑑𝑦
= −𝑦 + 𝐶1          and          𝑢 = −

𝑦2

2
+ 𝐶1𝑦 + 𝐶2 

 

Using the boundary conditions, 

 

 

 

 

 

Therefore, the equation of the velocity profile when the flow has reached a steady state is: 

 

𝑢 =
1

2
𝑦(1 − 𝑦) 

 

The maximum value of velocity u occurs when the vertical distance 𝑦 =
1

2
 

The maximum value of the velocity u is 

𝑢𝑚𝑎𝑥 =
1

8
= 0.125 

 

At the steady state, the mass flow rate �̇� is as follows. 

 

�̇� = ∫ 𝑢𝑑𝑦 = ∫
1

2
𝑦(1 − 𝑦)𝑑𝑦 =

1

12

1

0

1

0

 

 

Therefore, the maximum mass flow rate of this flow is 
1

12
. 

 

 

 

𝑢(0) = 0 ⇒   𝐶2 = 0 

𝑢(1) = 0 ⇒  −
1

2
+𝐶1 = 0 ⇒  𝐶1 =

1

2
 

 



Curve Fitting Mass Flow Rate: Saturation Growth Rate Equation 

 

The sum of the squares of residuals is  

𝑆𝑟 = ∑(𝑌𝑖 − 𝑌(𝑋𝑖))
2

𝑁

𝑖=1

 

 

The mass flow rate �̇�(𝑡) can be approximated by using a saturation growth rate equation, 

 

�̇�(𝑡) =

1
12 𝑡

𝑡 + 𝑏
 

 

Where 
1

12
 is determined from the steady state conditions and constant b is obtained using 

regression analysis. The equation was first linearized. 

 

1

�̇�(𝑡)
=

𝑡 + 𝑏

1
12 𝑡

⇒
1

�̇�(𝑡)
= 12 (1 + 𝑏

1

𝑡
) 

 

Representing 
1

�̇�(𝑡)
 as 𝑌𝑖 and 

1

𝑡
 as 𝑋𝑖, the final linearized equation was written as: 

 

𝑌𝑖 = 12(1 + 𝑏𝑋𝑖) 

 

Inserting this equation into the summation of least squares residuals, 

 

𝑆𝑟 = ∑(𝑌𝑖 − 12(1 + 𝑏𝑋𝑖))
2

𝑁

𝑖=1

 

 

In order to find the least sum of residuals, the derivative with respect to 𝑏 is taken and set to zero. 

 

𝑑𝑆𝑟

𝑑𝑏
= 2 ∑(𝑌𝑖 − 12(1 + 𝑏𝑋𝑖))(−12𝑋𝑖) = 0

𝑁

𝑖=1

 

 

Expanding this equation and solving for 𝑏 gives  

 

𝑏 =
12 ∑ 𝑋𝑖𝑌𝑖

𝑁
𝑖=1 − 144 ∑ 𝑋𝑖

𝑁
𝑖=1

144 ∑ 𝑋𝑖
2𝑁

𝑖=1

 

 

The numerical value for b is later solved using Excel. 

 



Curve Fitting Mass Flow Rate: Exponential Equation 

 

Additionally, the mass flow rate �̇�(𝑡) can be approximated by using an exponential equation, 

 

�̇�(𝑡) =
1

12
(1 − 𝑒−𝑎𝑡) 

 

Where 
1

12
  is obtained using steady state conditions and the constant a is obtained using 

regression analysis. 

 

The equation was first linearized. 

 

1 − 12�̇�(𝑡) = 𝑒−𝑎𝑡 ⇒ ln|1 − 12�̇�(𝑡)| = −𝑎𝑡 

 

Representing ln|1 − 12�̇�(𝑡)| as 𝑌𝑖 and 𝑡 as 𝑋𝑖, the final linearized equation was written as: 

 

𝑌𝑖 = −𝑎𝑋𝑖 

 

Inserting this equation into the summation of least squares residuals, 

 

𝑆𝑟 = ∑(𝑌𝑖 + 𝑎𝑋𝑖)
2

𝑁

𝑖=1

 

 

 

In order to find the least sum of residuals, the derivative with respect to 𝑏 is taken and set to zero. 

 

𝑑𝑆𝑟

𝑑𝑏
= 2 ∑(𝑌𝑖 + 𝑎𝑋𝑖)(𝑋𝑖) = 0

𝑁

𝑖=1

 

 

Expanding this equation and solving for 𝑎 gives  

 

𝑎 =
− ∑ 𝑋𝑖𝑌𝑖

𝑁
𝑖=1

∑ 𝑋𝑖
2𝑁

𝑖=1

 

 

The numerical value for a is later solved using Excel. 

 

MATLAB Program 

 

In order to develop the velocity profile over time and calculate the mass flow rate, MATLAB 

was used. The program code is as follows.  

 



%Final Project - Alisa Mizukami 
close; 
clc; 

  
%Delta t = 0.00125, Delta y = 0.05, Courant = 0.5 
%---------------------------------------------------------------------------% 
deltat=0.00125; %time step 
deltay=0.05; %mesh distance 
courant=deltat/(deltay^2); %courant number 
t=0; %elapsed time 
iter=0; %number of iterations 
num=1; %index for mass flow rate 
iterWrite=40; %write after how many iterations? 

  
yDivisions=1/deltay+1; %number of divisions 
y=0:deltay:1; 

  
%two vectors - uOld and uCurrent (to be calculated each step), 
%these differ by 1 time step 

  
%creates a zero vector for initial zero velocity for all i positions of y 
uOld=zeros(1,yDivisions);  

  
%Creates an error vector to compare uOld value to uCurrent value 
for k=1:length(uOld) 
    error(k)=10^-6;  
end 

  
while(1) 
    %Calculates values for velocity besides two endpoints (boundary) 
    for i=2:length(uOld)-1 %last value that can be calculated by equation 
        uCurrent(1)=0; %Boundary Condition 
        uCurrent(length(uOld))=0; %BC 
        uCurrent(i)=courant*uOld(i-1)+(1-

2*courant)*uOld(i)+courant*uOld(i+1)+deltat; 

       
        if i==length(uOld)-1 
            plot(uOld,y); 
            set(gca,'FontSize',20,'FontName','Times New Roman'); 
            title(['t= ',num2str(t)]); 
            xlabel('u'); 
            ylabel('y'); 
            axis([0,0.3,0,1]); 
            grid; 
            getframe; 
            %pause; 
        end 
    end 

     
    %determines when to calculate mass flow rate by number of iterations  
    %(floating point arithmetic doesn't work) 
    if rem(iter,iterWrite)==0 %calculates every iterWrite time steps 

         
        %Composite Trapezoid Rule 
        additive=0; 



        for j=2:length(uOld)-1 %ends are 0 
            additive=additive+2*uOld(j); %addition part of composite 

trapezoid rule 
            massFlowRate=(deltay/2)*additive; %mass flow rate 
            mFR(num,1)=t; %stores time and mfr into an array to plot 
            mFR(num,2)=massFlowRate; 
        end 
        fprintf('At time %.3f, mass flow rate is %.6f\n',t,massFlowRate); 
        num=num+1; 
    end 

     
    %checks to stop the time if flow is steady (no change in old and current 

vector) 
    if uCurrent-uOld<error  
        additive=0; 
        for j=2:length(uOld)-1 
            additive=additive+2*uOld(j); %addition part of composite 

trapezoid rule 
            massFlowRate=(deltay/2)*additive; %mass flow rate 
            mFR(num,1)=t; %stores time and mfr into an array to plot 
            mFR(num,2)=massFlowRate; 
        end 
        fprintf('\nAt time %.3f, mass flow rate is %.6f\n',t,massFlowRate); 
        break; 
    end 

     
    %save new data as old data for next calculation 
    for x=1:length(uOld) 
            uOld(x)=uCurrent(x); 
    end 

     
    %resets index 
    i=0; 

     
    %counts number of iterations 
    iter=iter+1; 

     
    %goes to next time step 
    t=t+deltat; 

     

    
end 

  
figure; 

  
%Mass flow rate is plotted 
plot(mFR(:,1),mFR(:,2),'k'); 
set(gca,'FontSize',20,'FontName','Times New Roman'); 
title('Mass flow rate vs. time'); 
xlabel('Time'); 
ylabel('Mass Flow Rate'); 
grid; 

  
hold on; 

 



%Saturation Growth Rate 
dt=iterWrite*deltat; 
time=0:dt:t; 
satY=((1/12)*time)./(time+(0.062766119)); 
plot(time,satY,'b'); 

  
hold on; 

  
%Exponential Equation 
expY=(1/12)*(1-exp(-8.946808008*time)); 
plot(time,expY,'r'); 

  
legend('Mass Flow Rate','Saturation Growth Rate','Exponential 

Equation','location','southeast'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results and Discussion 

 

The effect of the vertical distance size ∆𝑦 on the accuracy of the solution was determined by 

changing the ∆𝑦 value and consequently the ∆𝑡 to match the 𝜆 of 0.25. The value of ∆𝑦, the mass 

flow rate calculated by MATLAB at the steady state, and the error of the calculated mass flow 

rate with the actual flow rate 
1

12
, or in decimal format, 0.083333, is as follows. 

 

The mass flow rate was calculated using the composite trapezoid rule. Though a more accurate 

numerical result may be obtained using methods that provide exact results for higher degree 

polynomials, such methods provide exact values even for very coarse spacings. The trapezoid 

rule relies on adequate spacing for an accurate result. The values of ∆𝑦 were chosen to produce 

an integer number of divisions from 𝑦 values of 0 to 1. 

 

Table 1. Mass flow rate versus ∆𝑦 for 𝜆 = 0.25 

∆𝒚 𝒖𝒎𝒂𝒙 𝒖𝒎𝒂𝒙 𝒆𝒓𝒓𝒐𝒓 (%) �̇�(𝒔𝒕𝒆𝒂𝒅𝒚 𝒔𝒕𝒂𝒕𝒆) �̇� 𝒆𝒓𝒓𝒐𝒓 (%) Total Error (%) 

0.01 0.1209 3.28 0.080745 3.11 6.39 

0.025 0.1244 0.48 0.082869 0.56 1.04 

0.05 0.1248 0.16 0.083022 0.37 0.53 

0.1 0.1250 0.00 0.082475 1.03 1.03 

0.2 0.1200 4.00 0.079994 4.01 8.01 

0.25 0.1250 0.00 0.078121 6.25 6.25 

0.5 0.1250 0.00 0.062499 25.00 25.00 

 

Compared to the true value of 
1

12
, the best ∆𝑦 to use was 0.05, which corresponds to a ∆𝑡 of 

0.000625. A lower ∆𝑦 took a longer time to reach convergence and did not necessarily produce 

more accurate results, while a higher ∆𝑦 took less time to converge but produced inaccurate 

results. This process was repeated for a higher value of 𝜆 to determine the conditions that 

produce the fastest and most accurate results. 

 

Table 2. Mass flow rate and maximum velocity versus ∆𝑦 for 𝜆 = 0.5 

∆𝒚 𝒖𝒎𝒂𝒙 𝒖𝒎𝒂𝒙 𝒆𝒓𝒓𝒐𝒓 (%) �̇�(𝒔𝒕𝒆𝒂𝒅𝒚 𝒔𝒕𝒂𝒕𝒆) �̇� 𝒆𝒓𝒓𝒐𝒓 (%) Total Error (%) 

0.01 0.1230 1.60 0.082035 1.56 3.16 

0.025 0.1246 0.32 0.083076 0.31 0.63 

0.05 0.1249 0.08 0.083074 0.31 0.39 

0.1 0.1250 0.00 0.082473 1.03 1.03 

0.2 0.1200 4.00 0.079997 4.00 8.00 

0.25 0.1250 0.00 0.078123 6.25 6.25 

0.5 0.1250 0.00 0.062500 25.00 25.00 



 

Qualitatively, convergence for all values of ∆𝑦 was reached faster than with a 𝜆 value of 0.25. 

 

When the value of 𝜆 was raised to 0.5, exactly at the cutoff of the Courant condition, the value of 

∆𝑦 that produced the most accurate results was also 0.05. Furthermore, the total error was lower 

than that of 𝜆 = 0.25.  

 

Therefore, the optimal conditions for solving this problem are: 

 

∆𝑦 = 0.05 

∆𝑡 = 0.00125 

𝜆 = 0.5 

 

Which produces a steady-state maximum velocity of 0.1249 and a steady-state mass flow rate of 

0.083074, with a 0.39% total error from the expected values.  

 

This process was not repeated for a lower 𝜆 number due to the large amount of time it consumes.  

However, when 𝜆 = 0.01 for ∆𝑦 = 0.05, the maximum velocity was 𝑢𝑚𝑎𝑥 = 0.1209 and mass 

flow rate was �̇� = 0.080545 with a total percent error of 6.63%. Therefore, it can be concluded 

that a lower value of 𝜆 will not be beneficial as it takes a longer time to solve and does not 

produce results more accurate than with a higher 𝜆 value. 

 

Velocity Profile 

Using a time step ∆𝑡 of 0.00125 and a vertical distance size ∆𝑦 of 0.05 for a Courant condition of 

0.5, the following velocity profile development was observed. 

 

 
Figure 1. ∆𝑡 = 0.00125, ∆𝑦 = 0.05, 𝜆 = 0.5, at time 𝑡 = 0.01 

 

The velocity profile initially starts out flat, with the velocity being roughly the same across the 

vertical distance 𝑦.  



 

 

 
Figure 2. ∆𝑡 = 0.00125, ∆𝑦 = 0.05, 𝜆 = 0.5, at time 𝑡 = 0.05 

 

The profile starts to take on a parabolic shape, with the velocity at the wall remaining 0 due to 

the no-slip condition. 

 

 

 
Figure 3. ∆𝑡 = 0.00125, ∆𝑦 = 0.05, 𝜆 = 0.5, at time 𝑡 = 0.1 

 

The velocity profile continues developing into a fuller parabola. 

 

 



 
Figure 4. ∆𝑡 = 0.00125, ∆𝑦 = 0.05, 𝜆 = 0.5, at time 𝑡 = 0.5 

 

The development of the velocity profile starts to slow down and the maximum velocity is 

reaching 0.125.  

 

 
Figure 5. ∆𝑡 = 0.00125, ∆𝑦 = 0.05, 𝜆 = 0.5, at time 𝑡 = 0.745  (steady state) 

 

The velocity profile is fully developed and the flow has reached a steady state. 

 

 

 



Courant Condition Violation 

 

In order to test the effect of the Courant condition on stabilizing the solution, ∆𝑦 was set to 0.05 

as was initially done, but ∆𝑡 was set to 0.0015 for a 𝜆 of 0.6, just 0.1 above the Courant condition 

limit. 

 

As a result, the velocity profile displayed was highly disorganized with every increasing time 

and eventually disappeared.  

 

 

  
Figure 6. ∆𝑡 = 0.0051, ∆𝑦 = 0.05, 𝜆 = 0.6, at time 𝑡 = 0.5   

 

 

Furthermore, the mass flow rate continued decreasing to very high negative values. Therefore, it 

can be concluded that in order to solve this problem steadily, the Courant condition must be 

satisfied. 

 

 
Figure 7. Mass flow rate at ∆𝑡 = 0.0015, ∆𝑦 = 0.05, 𝜆 = 0.6  

 

 

 

 

 

 

 



Curve Fitting Mass Flow Rate: Saturation Growth Rate 

 

In order to curve fit the mass flow rate values, Excel was used. The values of 𝑡 and  

�̇�(𝑡) were obtained in MATLAB for the optimal conditions. 

 

The 𝑏 value for the saturation growth rate is calculated as follows. 

 

𝑏 =
12 ∑ 𝑋𝑖𝑌𝑖

𝑁
𝑖=1 − 144 ∑ 𝑋𝑖

𝑁
𝑖=1

144 ∑ 𝑋𝑖
2𝑁

𝑖=1

 

 

Table 3. Table of values for saturation growth rate regression analysis 

i 𝒕 �̇�(𝒕) 𝑿𝒊 =
𝟏

𝒕
 𝒀𝒊 =

𝟏

�̇�(𝐭)
 𝑿𝒊𝒀𝒊 𝑿𝒊

𝟐
 

1 0.05 0.033181623 20 30.13716339 602.7432678 400 

2 0.1 0.052702789 10 18.97432807 189.7432807 100 

3 0.15 0.06459026 6.666666667 15.48221045 103.2147364 44.44444444 

4 0.2 0.07183267 5 13.92124222 69.6062111 25 

5 0.25 0.076245124 4 13.11559288 52.46237154 16 

6 0.3 0.07893342 3.333333333 12.66890495 42.22968317 11.11111111 

7 0.35 0.080571271 2.857142857 12.41137179 35.46106225 8.163265306 

8 0.4 0.081569135 2.5 12.25953909 30.64884772 6.25 

9 0.45 0.082177086 2.222222222 12.16884231 27.04187179 4.938271605 

10 0.5 0.082547481 2 12.11424 24.22848 4 

11 0.55 0.082773145 1.818181818 12.08121299 21.96584179 3.305785124 

12 0.6 0.082910632 1.666666667 12.06117934 20.10196556 2.777777778 

13 0.65 0.082994396 1.538461538 12.04900633 18.53693282 2.366863905 

14 0.7 0.083045429 1.428571429 12.04160194 17.20228849 2.040816327 

Σ   65.03124653 201.4864358 1255.186841 630.3983356 

 

Therefore, 

𝑏 =
12(1255.186841) − 144(65.03124653)

144(630.3983356)
= 0.062766119 

 

The equation to be plotted in MATLAB is: 

�̇�(𝑡) =

1
12 𝑡

𝑡 + 0.062766119
 

 

This process was repeated for the exponential equation. 



Curve Fitting Mass Flow Rate: Exponential Equation 

 

The value of 𝑎 is calculated as follows. 

 

𝑎 =
− ∑ 𝑋𝑖𝑌𝑖

𝑁
𝑖=1

∑ 𝑋𝑖
2𝑁

𝑖=1

 

 

Table 4. Table of values for exponential equation regression analysis 

i 𝒕 �̇�(t) 𝑿𝒊 = 𝒕 𝒀𝒊 = 𝐥𝐧|𝟏 − 𝟏𝟐�̇�(𝐭)| 𝑿𝒊𝒀𝒊 𝑿𝒊
𝟐
 

1 0.05 0.033181623 0.05 -0.50779602 -0.0253898 0.0025 

2 0.1 0.052702789 0.1 -1.00085092 -0.10008509 0.01 

3 0.15 0.06459026 0.15 -1.49202437 -0.22380366 0.0225 

4 0.2 0.07183267 0.2 -1.98044392 -0.39608878 0.04 

5 0.25 0.076245124 0.25 -2.46441582 -0.61610396 0.0625 

6 0.3 0.07893342 0.3 -2.94126387 -0.88237916 0.09 

7 0.35 0.080571271 0.35 -3.40687102 -1.19240486 0.1225 

8 0.4 0.081569135 0.4 -3.85515229 -1.54206092 0.16 

9 0.45 0.082177086 0.45 -4.27766887 -1.92495099 0.2025 

10 0.5 0.082547481 0.5 -4.66383539 -2.33191769 0.25 

11 0.55 0.082773145 0.55 -5.00233173 -2.75128245 0.3025 

12 0.6 0.082910632 0.6 -5.28393774 -3.17036264 0.36 

13 0.65 0.082994396 0.65 -5.50478795 -3.57811217 0.4225 

14 0.7 0.083045429 0.7 -5.66797594 -3.96758315 0.49 

Σ   5.25 -48.0493558 -22.7025253 2.5375 

 

Therefore, 

𝑎 =
22.7025253

2.5375
= 8.946808008 

 

The equation to be plotted in MATLAB is: 

 

�̇�(𝑡) =
1

12
(1 − 𝑒−8.946808008𝑡) 

 

These two equations were plotted alongside the original mass flow rate values. 



 
Figure 8. Plot of mass flow rate, saturation growth rate curve, and exponential equation curve fits 

 

The mass flow rate increases with time but the rate slows down as the velocity reaches a steady 

state. 

 

From time 0 to 0.1, both the saturation growth rate curve and the exponential curve seem to fit 

the data well. However, the saturation growth rate curve follows a lower curve than that of the 

original mass flow rates as the time increases. Therefore, the exponential curve was a better fit 

for this data set overall as it follows the trend closely.  

 

 

 

 

 

 

 

 

 

 



Conclusion 

 

The velocity of the fluid was initially uniform with a flat velocity profile. Over time, the velocity 

profile developed into a parabolic shape, with the maximum steady-state velocity reaching 0.125 

and a mass flow rate of 0.0833.  In order to construct the development of the velocity profile in 

MATLAB, the finite difference method was used to obtain an explicit equation and the values 

for the spacing of vertical height and time step were chosen based on the Courant condition for 

maximum efficiency and accuracy.  

 

The values chosen were: 

∆𝑦 = 0.05 

∆𝑡 = 0.00125 

𝜆 = 0.5 

 

These values produced a maximum centerline velocity of 0.1249 and a steady-state mass flow 

rate of 0.083074, with a total error of only 0.39% from the analytical solution.  

 

A saturation growth rate curve and exponential equation were used to model the mass flow rate 

as a function of time. The saturation growth rate was initially a good representation of the mass 

flow rate but eventually modeled values lower than the actual flow rate with increasing time. The 

exponential equation followed the mass flow rate trend until the steady state, and therefore was 

an overall better fit for modeling the mass flow rate curve.  

 

Improvements 

 

In this project, steady state was assumed to be reached when the velocity values between one 

time step and the next were equivalent to the order of -6. In order to obtain more accurate results, 

this order may be decreased.  

 

The mass flow rate was calculated using the composite trapezoid rule. Since the adequate 

number of divisions is now known, in order to improve the accuracy, other methods such as the 

composite Simpson’s rule may be used. 

 

The number of points used to curve fit the mass flow rate was 14, excluding the initial mass flow 

rate of 0. Therefore, the mass flow rate curve fitting may also be improved by increasing the 

number of points used to determine the values for 𝑎  and 𝑏.  


